Sponsored Links
-->

Sunday, December 10, 2017

Hockey Stick Identity | Brilliant Math & Science Wiki
src: ds055uzetaobb.cloudfront.net

In combinatorial mathematics, the identity

? i = r n ( i r ) = ( n + 1 r + 1 )  for  n , r ? N , n > r {\displaystyle \sum _{i=r}^{n}{i \choose r}={n+1 \choose r+1}\qquad {\text{ for }}n,r\in \mathbb {N} ,\quad n>r}

is known as the hockey-stick or Christmas stocking identity. That name stems from the graphical representation of the identity on Pascal's triangle: when the addends represented in the summation and the sum itself are highlighted, the shape revealed is vaguely reminiscent of those objects.


Video Hockey-stick identity



Proofs

The inductive and algebraic proofs both make use of Pascal's identity:

( n k ) = ( n - 1 k - 1 ) + ( n - 1 k ) . {\displaystyle {n \choose k}={n-1 \choose k-1}+{n-1 \choose k}.}

Inductive proof

This identity can be proven by induction on n {\displaystyle n} .

Base case Let n = r {\displaystyle n=r} ;

? i = r n ( i r ) = ? i = r r ( i r ) = ( r r ) = 1 = ( r + 1 r + 1 ) = ( n + 1 r + 1 ) . {\displaystyle \sum _{i=r}^{n}{i \choose r}=\sum _{i=r}^{r}{i \choose r}={r \choose r}=1={r+1 \choose r+1}={n+1 \choose r+1}.}

Inductive step Suppose, for some k ? N , k ? r {\displaystyle k\in \mathbb {N} ,k\geqslant r} ,

? i = r k ( i r ) = ( k + 1 r + 1 ) {\displaystyle \sum _{i=r}^{k}{i \choose r}={k+1 \choose r+1}}

Then

? i = r k + 1 ( i r ) = ( ? i = r k ( i r ) ) + ( k + 1 r ) = ( k + 1 r + 1 ) + ( k + 1 r ) = ( k + 2 r + 1 ) . {\displaystyle \sum _{i=r}^{k+1}{i \choose r}=\left(\sum _{i=r}^{k}{i \choose r}\right)+{k+1 \choose r}={k+1 \choose r+1}+{k+1 \choose r}={k+2 \choose r+1}.}

Algebraic proof

We use a telescoping argument to simplify the computation of the sum:

? t = 0 n ( t k ) = ? t = k n ( t k ) = ? t = k n [ ( t + 1 k + 1 ) - ( t k + 1 ) ] = ? t = k n ( t + 1 k + 1 ) - ? t = k n ( t k + 1 ) = ? t = k + 1 n + 1 ( t k + 1 ) - ? t = k n ( t k + 1 ) = ( n + 1 k + 1 ) - ( k k + 1 ) ? 0 by telescoping = ( n + 1 k + 1 ) . {\displaystyle {\begin{aligned}\sum _{t=\color {blue}0}^{n}{\binom {t}{k}}=\sum _{t=\color {blue}k}^{n}{\binom {t}{k}}&=\sum _{t=k}^{n}\left[{\binom {t+1}{k+1}}-{\binom {t}{k+1}}\right]\\&=\sum _{t=\color {green}k}^{\color {green}n}{\binom {\color {green}{t+1}}{k+1}}-\sum _{t=k}^{n}{\binom {t}{k+1}}\\&=\sum _{t=\color {green}{k+1}}^{\color {green}{n+1}}{\binom {\color {green}{t}}{k+1}}-\sum _{t=k}^{n}{\binom {t}{k+1}}\\&={\binom {n+1}{k+1}}-\underbrace {\binom {k}{k+1}} _{0}&&{\text{by telescoping}}\\&={\binom {n+1}{k+1}}.\end{aligned}}}

A combinatorial proof

Imagine that we are distributing n {\displaystyle n} indistinguishable candies to k {\displaystyle k} distinguishable children. By a direct application of the stars and bars method, there are

( n + k - 1 k - 1 ) {\displaystyle {\binom {n+k-1}{k-1}}}

ways to do this. Alternatively, we can first give 0 ? i ? n {\displaystyle 0\leqslant i\leqslant n} candies to the oldest child so that we are essentially giving n - i {\displaystyle n-i} candies to k - 1 {\displaystyle k-1} kids and again, with stars and bars and double counting, we have

( n + k - 1 k - 1 ) = ? i = 0 n ( n + k - 2 - i k - 2 ) , {\displaystyle {\binom {n+k-1}{k-1}}=\sum _{i=0}^{n}{\binom {n+k-2-i}{k-2}},}

which simplifies to the desired result by taking n ? = n + k - 2 {\displaystyle n'=n+k-2} and r = k - 2 {\displaystyle r=k-2} , and noticing that n ? - n = k - 2 = r {\displaystyle n'-n=k-2=r} :

( n ? + 1 r + 1 ) = ? i = 0 n ( n ? - i r ) = ? i = r n ? ( i r ) . {\displaystyle {\binom {n'+1}{r+1}}=\sum _{i=0}^{n}{\binom {n'-i}{r}}=\sum _{i=r}^{n'}{\binom {i}{r}}.}

Another combinatorial proof

We can form a committee of size k + 1 {\displaystyle k+1} from a group of n + 1 {\displaystyle n+1} people in

( n + 1 k + 1 ) {\displaystyle {\binom {n+1}{k+1}}}

ways. Now we hand out the numbers 1 , 2 , 3 , ... , n - k + 1 {\displaystyle 1,2,3,\dots ,n-k+1} to n - k + 1 {\displaystyle n-k+1} of the n + 1 {\displaystyle n+1} people. We can divide this into n - k + 1 {\displaystyle n-k+1} disjoint cases. In general, in case x {\displaystyle x} , 1 ? x ? n - k + 1 {\displaystyle 1\leqslant x\leqslant n-k+1} , person x {\displaystyle x} is on the committee and persons 1 , 2 , 3 , ... , x - 1 {\displaystyle 1,2,3,\dots ,x-1} are not on the committee. This can be done in

( n - x + 1 k ) {\displaystyle {\binom {n-x+1}{k}}}

ways. Now we can sum the values of these n - k + 1 {\displaystyle n-k+1} disjoint cases, getting

( n + 1 k + 1 ) = ( n k ) + ( n - 1 k ) + ( n - 2 k ) + ? + ( k + 1 k ) + ( k k ) . {\displaystyle {\binom {n+1}{k+1}}={\binom {n}{k}}+{\binom {n-1}{k}}+{\binom {n-2}{k}}+\cdots +{\binom {k+1}{k}}+{\binom {k}{k}}.}

Maps Hockey-stick identity



See also

  • Pascal's identity
  • Pascal's triangle
  • Vandermonde's identity

The making of the CSKA ice hockey club logo and corporate identity
src: www.artlebedev.com


External links

  • On AOPS
  • On StackExchange, Mathematics

Hockey stick identity, argued via path counting - YouTube
src: i.ytimg.com


References

Source of article : Wikipedia